Predicción de incertidumbre basada en entropía

Predicción de incertidumbre

Este artículo explora cómo la Entropía puede ser utilizada como una herramienta para la estimación de la incertidumbre en tareas de segmentación de imágenes. Explicaremos qué es la Entropía y cómo implementarla con Python.

Foto de Michael Dziedzic en Unsplash

Mientras trabajaba en la Universidad de Cambridge como Científico de Investigación en Neuroimagen e Inteligencia Artificial, me enfrenté al desafío de realizar la segmentación de imágenes en conjuntos de datos cerebrales complicados utilizando las últimas técnicas de Aprendizaje Profundo, especialmente el nnU-Net. Durante esta tarea, observé una brecha significativa: la falta de estimación de la incertidumbre. Sin embargo, la incertidumbre es crucial para la toma de decisiones confiables.

Antes de adentrarnos en los detalles específicos, siéntete libre de revisar mi repositorio de Github que contiene todos los fragmentos de código discutidos en este artículo.

La importancia de la incertidumbre en la segmentación de imágenes

En el mundo de la visión por computadora y el aprendizaje automático, la segmentación de imágenes es un problema central. Ya sea en imágenes médicas, automóviles autónomos o robótica, una segmentación precisa es vital para una toma de decisiones efectiva. Sin embargo, un aspecto a menudo pasado por alto es la medida de la incertidumbre asociada con estas segmentaciones.

¿Por qué deberíamos preocuparnos por la incertidumbre en la segmentación de imágenes?

En muchas aplicaciones del mundo real, una segmentación incorrecta podría tener consecuencias graves. Por ejemplo, si un automóvil autónomo identifica erróneamente un objeto o un sistema de imágenes médicas etiqueta incorrectamente un tumor, las consecuencias podrían ser catastróficas. La estimación de la incertidumbre nos proporciona una medida de cuán “seguro” está el modelo acerca de su predicción, lo que permite tomar decisiones mejor fundamentadas.

También podemos usar la Entropía como medida de incertidumbre para mejorar el aprendizaje de nuestras redes neuronales. Esta área se conoce como ‘aprendizaje activo’. Esta idea se explorará en artículos posteriores, pero la idea principal es identificar las zonas en las que los modelos tienen más incertidumbre para enfocarnos en ellas. Por ejemplo, podríamos tener una CNN que realiza la segmentación de imágenes médicas en el cerebro, pero que tiene un rendimiento muy pobre en sujetos con tumores. Luego podríamos concentrar nuestros esfuerzos en adquirir más etiquetas de este tipo.

We will continue to update Zepes; if you have any questions or suggestions, please contact us!

Share:

Was this article helpful?

93 out of 132 found this helpful

Discover more

Inteligencia Artificial

Silicon Volley Los diseñadores utilizan la IA generativa para obtener un asistente de Chip

Un artículo de investigación publicado hoy describe formas en que la inteligencia artificial generativa puede ayudar ...

Inteligencia Artificial

Este artículo de IA explica cómo los lenguajes de programación pueden potenciarse entre sí a través de la sintonización de instrucciones.

La introducción de los Modelos de Lenguaje Grande (LLMs) ha causado sensación en el mundo. Estos modelos son famosos ...

Inteligencia Artificial

El cucaracha cibernético puede navegar por un laberinto

Los investigadores han desarrollado un método para crear cucarachas ciborg para ser utilizadas en misiones de búsqued...

Inteligencia Artificial

¿Puede la IA realmente restaurar detalles faciales de imágenes de baja calidad? Conozca DAEFR un marco de doble rama para mejorar la calidad

En el campo del procesamiento de imágenes, recuperar información de alta definición de fotografías faciales de mala c...